
Computer Chess Programs (Panel) 
Chairman: Benjamin Mittman, Northwestern University, Evanston, III. 

Panelists: Gary J. Boos, University of Minnesota, Minneapolis, Minn. 
Dennis W. Cooper, Bell Telephone Laboratories, Whippany, N. J. 
James J. Gillogly, Carnegie-Mellon University, Pittsburgh, Penn. 
David Levy, University of Glasgow, Glasgow, Scotland 
Capt. Herbert D. Raymond, U.S. Marine Corps, San Diego, Calif. 
David J. Slate, Northwestern University, Evanston, Ill. 
Capt. Rolf C. Smith, U.S. Air Force, Richards-Gebaur Air Force Base, Mo. 

Last year, during ACM'70 in New York, the 
First United States Computer Chess 
Championship was held. Six programs com- 
peted, with Northwestern University's 
CHESS 3.0 winning the tournament. This 
year at ACM'71, the Second Annual Computer 
Chess Championship and a panel of the 
programs' authors are scheduled. At the 
time of this writing, there are six 
programs entered in the tournament. Pre- 
sented below are short summaries of authors' 
panel presentations, giving some details 
of their programs and discussing techniques 
for developing more effective ehess play- 
ing programs. Mr. David Levy, an inter- 
national chess master from the University 
of Glasgow, is the tournament director 
for the chess championship and a discussant 
during the panel. 

KEY WORDS AND PHRASES: artificial intelli- 
gence, chess playing programs, computer 
chess championship, tree searching, 
heuristic programming, alpha-beta pruning, 
minimax. 
CR CATEGORIES: 3.60, 3.62, 3.64, 3.66 

Herbert D. Raymond 

This chess-playing program was 
written in Quick Systems Programming 
Language (QSPL), a language developed 
for the SDS 940. Although the code 
generated by this compiler is rather 

inefficient, it was decided to use this 
high level language rather than suffer 
through assembly level coding. This 
choice was made considering requirements 
for rapid program development, ease of 
maintenance, flexibility, and understand- 
able documentation. The program runs 
under a time-sharing system using a tele- 
type for man-machine communication. The 
program accepts Postal Chess Notation as 
input and responds likewise. Addition- 
ally, it will print the board when 
requested and ask for a piece selection 
for pawn promotion. The user interface 
also allows for player color selection. 
The program itself has been developed, 
so far, in two stages as defined below. 

Stage one of program development 
consisted of writing the legal chess 
support routines and a one move look- 
ahead algorithm for machine move selection. 
A very blunt approach was taken to create 
the legal move generators. Upon call to 
one of the piece move generators (pawn, 
knight, bishop, rook, queen, king) with 
an (x, y) board position as input, all 
legal moves for that type of piece in that 
position are listed in a table. These 
move generators use only the current 
board position (from a table), except for 
the pawn and king move generators which 
also refer to the game (move record) table 
to extract information for e_~n passant 
captures and castling. Two other routines, 

g? 



for check and mate, complete the legal 
move machinery. These latter routines 
test for check and mate using an input 
of the color to be tested for those 
conditions and returning true or false 
answers. 

An opponent's move is checked for 
legality by taking the (x, y)-from posi- 
tion and calling on the correct piece 
routine. All legal moves from that 
position with that piece are checked 
against the (x, y)-to position of the 
opponent's move. If no match is found, 
the move is illegal and a new move is 
requested (an error message is typed also). 
If the move matches, then the check rou- 
tine is called to determine if the 
opponent has attempted to move into check 
or has failed to move out of a check. 
If true, once again an illegal move is 
signaled. The check and mate routines 
are then called using the machine's color 
as an input to advise of check or mate. 
Legal chess by the opponent thus being 
assured, it is the machine's turn to play. 

The machine starts its move selec- 
tion by scanning the board and generating 
every move for each of its pieces using 
the piece move generators. Moves into 
check are immediately eliminated using 
the check routine. Then, each of the 
possible moves is rated by adding values 
for check on opponent, piece captured, 
control of center, mobility, development, 
other king attacks, own king defense, 
promotion, attacks, and irmnediate replies. 
All except the last two are based on that 
move being evaluated and the current 
board position. Replies and attacks con- 
sist of using the move generators to list 
every possible reply and every possible 
second move in a row (two machine moves 
with no intervening opponent move). These 
moves are rated only on the basis of 
pieces captured (or attacked) and control 
of the board center. Their values are 
summed and applied to the rating value 
of the basic move. A move which check- 
mates the opponent is tested for first 
and if found, immediately receives the 
highest possible rating value and no 
other rating calculations are made. 

This first stage program was experi- 
mented with to optimize the play by chang- 
ing piece values, position values, and 
other variable parameters; recognizing 
that the program only looked ahead one 
move. The second stage of program devel- 
opment consisted of adding a recursive 
routine to look ahead, using the same 
rating criteria, as far as a set depth 
and using a set width of move selection. 
A minimax or alpha-beta algorithm was 

employed in hopes of getting sufficient 
cut-offs to be able to increase look-ahead 
efficiency. No dynamic changes to the 
width and depth were incorporated. 

This second stage of development 
created the program as it exists today. 
Unfortunately, the combination of a 1.75 
microsecond cycle time and the inefficient 
code generated by the compiler allow only 
a three or four move look-ahead with a 
width of three or four without exceeding 
time constraints. The program does, how- 
ever, play a quite reasonable game of 
chess. In~nediate future effort will con- 
sist of the addition of more sophistica- 
tion to the move tree machinery; probably 
in the areas of dynamic width and depth 
changes and recognition of double moves 
where one would do. Also, the applica- 
tion of different heuristics to opening, 
middle, and end games could easily be 
implemented. 

James J. Gillogly 

The Technology Program (TECH) uses 
a depth-first search of the move tree to 
a fixed depth with no forward pruning. 
At that depth it has a limited quiescence 
analysis and a simple terminal evaluation 
function. Only enough ordering is done 
to get maximum payoff from the alpha-beta 
procedure, and to supply tiebreaks for 
equal positions. 

TECH attempts to utilize the brute 
force of the computer in analysis of 
positions, rather than attempting to apply 
"intelligence" as do most other programs. 
It is felt that TECH is thus a benchmark 
in this dimension, that is, the utiliza- 
tion of the speed of computers for chess 
playing. Its transparent structure can 
be easily reprogrammed for faster computers 
as they come along. As computer speeds 
increase, TECH can continue to be a stand- 
ard, providing a challenge to programs 
which use "intelligence". 

TECH is programmed in the BLISS 
implementation language for the PDP-10. 
It runs in about 10K. It scored 
1 1/2 : 3 1/2 in its first USCF-rated 
tournament, the Golden Triangle Open in 
Pittsburgh, April 3-4, 1971. Its tenta- 
tive rating based on this performance has 
not yet been computed. 

98 



David J. Slate 

CHESS 3.5 is a chess-playing computer 
program written in FORTRAN and assembly 
language for use on CDC 6000, 7000, and 
CYBER-70 series computers. It is a suc- 
cessor to CHESS 3.0 which won the First 
U. S. Computer Chess Championship at 
ACM'70 in New York. Its basic chess- 
playing algorithm combines a position 
evaluation function with an alpha-beta 
pruned tree search. Rudimentary self and 
rote learning mechanisms utilize random 
access, mass storage for a positions and 
openings library. The user may adjust 
the width and depth of the tree search. 
In tournaments, these limits are automati- 
cally adjusted based on time considera- 
tions. The position evaluator uses some 
50 parameters to take into account total 
value of the pieces, hung pieces, threats 
to pieces, square control, mobility, pawn 
structure, castling status and pins. The 
program has approximately the playing 
strength of a "C" rated human chess player. 

CHESS 3.5 is based on a simple design 
which performs a depth first search to a 
fixed number of plies "D". The same eval- 
uation function which scores the end points 
of the branches of the tree also is used 
to select the "L l' best moves to be 
searched at each level i, where L i is a 
fixed number for each i. There are many 
deficiencies in this still primitive 
design which show up glaringly in practice. 
To understand these deficiencies, it helps 
to understand the basic design criterion: 
to intelligently limit the amount of tree 
searching that is done, by only searching 
the "important" moves, and only searching 
them as far as "necessary". This technique 
is similar to that used by human chess 
players to manage the problem of analyzing 
a position. One of its major defects, 
however, is that it does not go far enough 
in being intelligently selective. To 
illustrate this, I shall describe several 
problems and their solutions as implemented 
in CHESS 3.5, plus several problems still 
unsolved. 

One such problem is that the evalua- 
tion function is the sole selector of 
moves to be searched. There are many 
moves, which, although they appear at 
first glance (at least to an evaluating 
function) to be poor (e.g., because they 
lose material), turn out, after further 
study, to be very good. This is particu- 
larly true of sacrificial, combinatorial 
moves. A program, without a provision 
for detecting this type of move, plays a 
bland, passive style of game. It is also 
very vulnerable to traps, since it antici- 

pates a similar style of play from its 
opponents. 

At each level i, CHESS 3.5 supple- 
ments the L i "best-valued" moves with all 
checks, all captures, and those moves 
having a "tactical potential" signifi- 
cantly above the background, average 
"tactical potential" for all the moves. 
"Tactical potential" is an additional 
measure returned by the evaluation func- 
tion, and includes such factors as threats 
to enemy pieces, imminent pawn promotions 
and multiple threats to squares adjacent 
to the enemy king. This "tactical move" 
feature greatly improves the play of the 
program without a very large cost in time. 

Another problem is the fixed width L i. 
Ideally, the number of moves to be 
searched at a given level should depend 
dynamically on the nature of the position. 
In CHESS 3.5, except for an important 
exception, the set of moves to be searched 
from a given node is fixed before the 
first search begins. The exception is 
the "fall back" search at the first ply. 
If the results of the searches of all the 
moves in the set are unsatisfactory in 
that they yield low evaluations, indicat- 
ing that they do not defend against some 
opponent's threat discovered at a higher 
level, then additional moves are searched 
until the threat is answered. This fall 
back search is inexpensive (because it is 
only occasionally invoked) but very impor- 
tant in strengthening defensive ability. 

A fixed depth, D, to which most lines 
are searched, makes as little sense as a 
fixed width, L i. The decision as to how 
far to search a line should be made dynam- 
ically on the basis of information returned 
by the evaluation function while the 
search is in progress. CHESS 3.5 still 
uses a fixed depth, except for a special 
procedure at the first ply. After the 
full tree search of the best moves is 
completed, all the remaining moves are 
searched to a depth of 2-ply, and any 
whose evaluations improve sufficiently 
are re-searched to the full depth, D, to 
get a final result. 

No matter how flexible one makes the 
criteria for determining which moves are 
searched and how far, one is still limited 
by the fact that once a move is searched 
and is discarded, this verdict is final. 
Ideally, one would like the search of a 
given line to depend not only on the re- 
suits of the search of all preceding moves, 
but also on the results of moves not yet 
searched, in the sense that the line could 
be re-searched more than once, to different 
depths and widths. One might want to go 
back to a previously searched line and 

99 



extend its branches without redoing the 
ones that had already been done. The 
special 2-ply test search mentioned above 
is a special, minor case of this approach. 
But CHESS 3.5 has no general facility for 
this kind of search, which requires the 
ability to save search trees. 

The above-mentioned problems lead to 
consideration of some general principles, 
which, I feel, will be crucial to the 
further development of chess-playing 
computer programs. Since an evaluating 
function inevitably returns ambiguous 
results, it should do much more than just 
return a numerical evaluation. It should 
also report to what extent it "trusts" 
its own evaluation, and what factors 
further tree searching could clarify. 
Thus, the evaluator should become the 
controller that drives the tree search. 
Conversely, results of the tree search 
should be used to determine in which 
areas of analysis the evaluator should 
concentrate. In this way, the evaluator 
and tree search procedures, through a 
mutual feedback procedure, should provide 
the impetus to each other to complete the 
analysis of a chess position. This fact 
suggests that the distinction between the 
evaluation and tree search mechanisms is 
to a large extent artificial, that the 
two functions not only complement and 
reinforce each other, but blend into each 
other across a fuzzy boundary. In fact, 
the chess thinking of humans works in 
this manner, and when chess programs 
achieve the natural harmony between tree 
search and evaluator that was lost in 
their primitive inception, then will their 
great speed and accuracy bring the Golden 
Age. 

Mr. Slate's collaborators on 
CHESS 3.5 are Mr. Larry Atkin of Automatic 
Electric Company and Mr. Keith Gorlen of 

the Public Health Service. 

Gary J. Boos 

Since late 1967 James Mundstock, 
myself, and others, have been working on 
our chess program, "Mr. Turk". "Mr. Turk" 
was developed at the University of 
Minnesota on a CDC 6600. At almost all 
times everyone working on the program was 
both a chess player and a reasonably good 
FORTRAN programmer. 

Our main goal has been to produce a 
program that could win as many chess 
games as possible. The methods used in 
striving for this goal have varied from 
group to group. 

Based upon our chess experience 
(Mundstock is a class B player, and I am 
an experienced, class A player), we knew 
that to obtain a winning position, one 
normally has to outplay the opponent in 
both the opening and the middle game. 
Consequently, we concentrated our initial 
efforts on writing good evaluation rou- 
tines for the opening and middlegame, 
plus producing routines that supplied 
legal moves, location of pinned pieces, 
which squares are attacked by which 
pieces, etc. The result was a program 
that would produce reasonable moves 80 
to 90% of the time, with (in effect) a 
1-ply level lookahead. 

The next major task was to write a 
lookahead routine and incorporate it into 
the rest of the program. Existing look- 
ahead routines were not impressive. They 
tended to have a vast number of limbs in 
their move tree, and very little evalua- 
tion was spent on the positions examined. 
An experienced human chess player selects 
variations with an efficiency at least 
i0 times greater than any pre-1970 pro- 
gram. Mundstock and I felt that any 
attempt to approach a master's thought 
process should help in shaping and improv- 
ing the move tree. The most noticeable 
difference in previous lookahead routines 
and a master's analysis is that the 
master analyzes one and only one line at 
a time. He seems to try to insure that 
that line is the best for both sides, 
and he attemptsto analyze it as deeply as 
his vision and time permit. 

Mundstock noticed an article by 
Slagle and Bursky in the Journal of the 
ACM, that pointed toward an algorithm 
that seemed better than alpha-beta prun- 
ing. Based upon this article, and guided 
by Mundstock, I wrote a lookahead routine 
whose main theme is that the best line is 
analyzed until it is shown that it is no 
longer the best line. 

This process eliminates many common 
problems that accompany a fixed depth 
search, one of which is the "Ostrich 
Effect" which existed in even Northwestern 
University's CHESS 3.0. Tests showed 
that in a small set of positions, "Mr. 
Turk" could find the main variation on 
the first try. We believe that the basic 
theme of our lookahead routine is better 
than alpha-beta pruning. 

Full scale tests of the program re- 
vealed serious shortcomings. "Mr. Turk" 
had only a fixed width (5 moves) move 
tree, and when all of the top 5 moves 
were bad (often twice a game), the pro- 
gram was forced to play the best of those 
5. That is to say, we had no fall-back 

i00 



routine; no panic button to push. 
Other weaknesses were: a) the in- 

ability to include sacrificial moves in 
the move tree, b) little endgame capa- 
bility, and c) only a small opening book. 
Nevertheless, we challenged five other 
programs to postal matches. Only 
Northwestern University was capable of 
playing. The match was started in late 
1970, and CHESS 3.2 is presently winning 
the two game match. 

Our team has been working on the 
above weaknesses since September 1970, 
and also performing a major overhaul on 
the existing code. We hope to be able 
to include tactical moves in the move 
tree, provide a fall-back algorithm, 
enlarge and improve our opening book and 
still keep the necessary storage at 
under 54k. 

It is our opinion that existing 
chess programs have many weaknesses, and 
that their play is far too often super- 
ficial. Almost all programs find it 
very difficult to win an endgame if posi- 
tional play is of the essence. Most pro- 
grams have opening books, but I seriously 
doubt that any can handle transpositions. 
I have never seen a program sacrifice 
material unless either checkmate or a 
net win of material was within its view. 
Also (and this is probably the hardest 
task of all) no program has been able to 
develop a logical plan of play in a 
general position. With the aid of other 
chess players in Minnesota, we have 
developed a secret weapon for the Second 
ACM tournament, and will attempt to ex- 
ploit one of these weaknesses. 

The Second ACM tournament will be 
far stronger than the 1970 championship 
(how much stronger will be indicated by 
where CHESS 3.5 finishes). The tourna- 
ment will provide wery interesting games, 
and the panel discussions between chess 
programmers from across the nation will 
bring forth new ideas. We must learn 
all the lessons we can, for next year, 
the Russians are coming. 

Rolf C. Smith 

SCHACH was originally developed in 
1968 as part of the requirements for the 
degree of Master of Computing Science at 
Texas A&MUniversity. Basic FORTRAN was 
chosen as the language which would lend 
itself best to the programming and the 
degree of machine independence and avail- 
ability desired by its authors. It was 
initially programmed via the RAx terminal 

system on an IBM 360/40 belonging to LTV 
on loan to the University. In late 1968 
it was switched over to A&M's new 
IBM 360/65; in 1969 it ran on IBM 360/50's 
in Saigon, RVN and in Sadahip, Thailand, 
when the authors were transferred over- 
seas with the U° S. Air Force. It has 
most recently run on an IBM 1410 and is 
now in residence on a UNIVAC 418-111. 

The backbone of SCHACH is the con- 
cept of piece board control, defined as 
all squares on which a piece exerts 
direct or indirect influence (can move to 
in a capture mode). Utilizing this con- 
cept we have found that a pseudo-dynamic 
position projection can be effected in a 
static environment on a local scale. 
Significant is that this is accomplished 
through the control concept without 
actual move regeneration in depth. Cou- 
pled with a heuristic method developed 
for examination of multiple piece ex- 
changes (SWAP), it is theoretically 
possible to predict/project move 
sequences up to 36 plys in depth with 
substantial accuracy. This is used in 
lieu of alpha-beta pruning or dynamic 
move-generation ordering, permitting pre- 
pruning of move-group subsets prior to 
recursive evaluation and deeper ply ex- 
plorations. 

The following items are considered 
significant enough to warrant discussion 
during the panel session: 
I. Piece board control methods, theory, 

tabling and application. 
2. Dynamic piece reweighting system. 
3. Approaches to minimax criteria and 

systems of treeing used to date. 
4. Table of interrelated values/weights 

for the overall static evaluation 
"polynomial" and positionality 
criteria. In support of this are 
some sample sequences which demon- 
strate the effect of some of the major 
criteria in a stand-alone use for 
static evaluation. 

5. Coding optimization and considera- 
tions in logic optimization for elim- 
ination of repetitive and recursive 
portions in favor of progressive 
deepening and reevaluation compres- 
sion and retention. 

6. Book opening considerations. 
7. Macro flow of program logic and micro 

explanation of basic table design. 
8. Statistics accrued in game play. 

Captain Smith collaborated with 
Captain Franklin D. Ceruti, USAF, in 
the development of SCHACH. 

i01 



Dennis W. Cooper 

COKO III is a tournament level chess 
player written entirely in FORTRAN IV. 
It has executed on several computers: 
IBM 7044, IBM 360/50/65/91, PDP I0, 
Univac 1108, and B5500/6500. On the 
IBM 360/65, COKO III plays a minimal 
chess game at the rate of .2 seconds per 
move, with a level close to lower chess 
club play. In addition, COKO III is 
fully conversational in the sense that 
the user has over 20 different commands 
at his disposal in controlling move 
generation, diagnostic printout, and game 
tree statistics. 

A highly selective tree searching 
procedure controlled by tactical chess 
logistics allows a combination of multi- 
ple minimal games per move to achieve 
maximum performance. The tactical chess 
logistics are ordered according to 
threat, and are searched in that order. 
Those tactics with equal threat value 
are ordered according to strategical con- 
siderations. Consequently, COKO III uses 
a near optimal search procedure and finds 
mating combinations very quickly. 

COKO III uses a transformational 
evaluator which permits the evaluation 
of many moves disregarding irrelevant 
strategical considerations and also allows 
the evaluation to stop at any stage of 
analysis. COKO III does not use the 
famous alpha-beta procedure. Although 
the alpha-beta procedure is a great time 
saving method, it is unclear at this 
stage of program development what the 
full significance of applying such a 
method to a tactical-strategical game 
tree would be. COKO III does save the 
chess tree with periodic pruning to allow 
for the addition of more branches. COKO III 
also has the ability to investigate 
different chess lines alternately. This 
principle is mainly used when only strate- 
gical moves are being examined. In addi- 
tion, COKO III contains a strategical 
pre-analysis procedure that maps the 
many Lasker regions. COKO III contains 
over 50 specific chess algorithms which 
provide a command structure for all 
chess program development. 

Mr. Cooper's collaborator on 
COKO III is Dr. Edward Kozdrowicki from 
the University of California, Davis. 

102 


